Paul Efficient Parameter Inference for Stochas - tic Chemical Kinetics

نویسندگان

  • Debdas Paul
  • Harri Lähdesmäki
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition-based Anytime Approximation for Belief Updating

The paper presents a parameterized approximation scheme for probabilistic inference. The scheme, called Mini-Clustering (MC) extends the partition-based approximation offered by mini-bucket elimination, to tree de-compositions. The beneet of this extension is that all single variable beliefs are computed (approximately) at once, using a two-phase message-passing process along the cluster tree. ...

متن کامل

Convergence of the Monte Carlo Em for Curved Exponential Families

SUMMARY The Monte Carlo Expectation Maximization (MCEM) algorithm (Wei and Tanner (1991)), a stochas-tic version of EM, is a versatile tool for inference in incomplete data models, especially when used in combination with MCMC simulation methods. Examples of applications include, among many others: regression with missing values (Wei and Tanner (1991)), time-series analysis (Chan and Ledolter (...

متن کامل

Non - Exponential Stochastic Petri Nets :

The aim of this tutorial is to present recent research work in the area of non-Markovian stochas-tic Petri nets with particular emphasis on the se-mantical implication of these models, their speci-cation and the related solution techniques.

متن کامل

Mean Field Behaviour in a Local Low - Dimensional Model Hans - Martin Bröker and Peter Grassberger

We point out a new mechanism which can lead to mean field type behaviour in nonequilibrium critical phenomena. We demonstrate this mechanism on a two-dimensional model which can be understood as a stochas-tic and non-conservative version of the abelian sandpile model of Bak et al. [1]. This model has a second order phase transition whose critical behaviour seems at least partly described by the...

متن کامل

Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm

In this paper we adopt general sum stochas tic games as a framework for multiagent re inforcement learning Our work extends pre vious work by Littman on zero sum stochas tic games to a broader framework We de sign a multiagent Q learning method under this framework and prove that it converges to a Nash equilibrium under speci ed condi tions This algorithm is useful for nding the optimal strateg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014